Giải bài toán bằng cách lập hệ phương trình _ ĐGNL

1. Các kiến thức cần nhớ

Các bước giải bài toán bằng cách lập hệ phương trình

Bước 1. Lập hệ phương trình:

- Chọn các ẩn số và đặt điều kiện thích hợp cho các ẩn số;

- Biểu diễn các đại lượng chưa biết theo các ẩn và các đại lượng đã biết;

-Lập hệ phương trình biểu thị mối quan hệ giữa các đại lượng

Bước 2. Giải hệ phương trình vừa thu được.

Bước 3. Kết luận

-Kiểm tra xem trong các nghiệm của hệ phương trình, nghiệm nào thỏa mãn điều kiện của ẩn.

- Kết luận bài toán.

2. Các dạng toán thường gặp

Dạng 1: Toán liên quan đến mối quan hệ giữa các số

Phương pháp:

Ta thường sử dụng các kiến thức  sau:

+) Biểu diễn số có hai chữ số : $\overline {ab}  = 10a + b$ trong đó

$a$ là chữ số hàng chục và $0 < a \le 9$, $a \in \mathbb{N}$,

$b$ là chữ số hàng đơn vị và $0 \le b \le 9,b \in \mathbb{N}$.

+) Biểu diễn số có ba chữ số: $\overline {abc}  = 100a + 10b + c$ trong đó

$a$ là chữ số hàng trăm và $0 < a \le 9$, $a \in \mathbb{N}$,

$b$ là chữ số hàng chục và $0 \le b \le 9,b \in \mathbb{N}$,

$c$ là chữ số hàng đơn vị và $0 \le c \le 9,c \in \mathbb{N}$.

Dạng 2: Toán chuyển động

Phương pháp:

Ta thường sử dụng các công thức $S = v.t$, $v = \dfrac{S}{t},t = \dfrac{S}{v}$

Với $S:$ là quãng đường, $v:$ là vận tốc, $t$: thời gian

Dạng 3: Toán làm chung công việc

Phương pháp:

Một số lưu ý khi giải bài toán làm chung công việc

- Có ba đại lượng tham gia là: Toàn bộ công việc , phần công việc làm được trong một đơn vị thời gian (năng suất) và thời gian.

- Nếu một đội làm xong công việc trong $x$ ngày thì một ngày đội dó làm được $\dfrac{1}{x}$ công việc.

- Xem toàn bộ công việc là $1$ (công việc).

Dạng 4: Toán phần trăm

Phương pháp:

- Nếu gọi tổng số sản phẩm là $x$ thì số sản phẩm khi vượt mức $a\% $ là $(100 + a)\% .x$ (sản phẩm)

- Nếu gọi tổng số sản phẩm là $x$ thì số sản phẩm khi giảm $a\% $ là $(100 - a)\% .x$ (sản phẩm).

Dạng 5: Toán có nội dung hình học

Phương pháp:

Một số công thức cần nhớ

Với tam giác:

Diện tích = (Đường cao x Cạnh đáy) $:2$

Chu vi = Tổng độ dài ba cạnh

Với tam giác vuông: Diện tích = Tích hai cạnh góc vuông$:2$

Với hình chữ nhật: 

Diện tích = Chiều dài. Chiều rộng

Chu vi=(Chiều dài + chiều rộng) $.2$

Với hình vuông cạnh $a$

Diện tích = ${a^2}$

Chu vi = Cạnh . $4$

Dạng 6: Bài toán chảy chung, chảy riêng của vòi nước:

Phương pháp:

Bước 1: Tìm lượng nước chảy chung của hai vòi

+ Lượng nước chảy riêng của mỗi vòi vào bể hoàn thành.

+ Lập phương trình lượng nước.

Bước 2: Thời gian hai vòi chảy đầy bể.

+ Thời gian chảy riêng hoàn thành của mỗi vòi.

+ Lập phương trình thời gian chảy đầy bể.

Bước 3: Giải hệ phương trình

Bước 4: Kết luận.

Dạng 7: Một số dạng toán khác

- Bài toán có chuyển động của trên nước:

+ Vận tốc xuông dòng = Vận tốc thực + Vận tốc dòng nước

+ Vận tốc ngược dòng = Vận tốc thực – Vận tốc dòng nước

- Bài toán liên quan đến  kiến thức Vật lý, Hóa học

 Khối lượng riêng: \(D = \dfrac{m}{V}\)

Với D là khối lượng riêng, m là khối lượng, V là thể tích.

Công thức thành phần phần trăm của chất có dung dịch:

\(C\%  = {m_{ct}}:{m_{dd}}\)

Với \(C\% \) là nồng độ phần trăm, \({m_{ct}}\) là khối lượng chất tan, \({m_{dd}}\) là khối lượng dung dịch.