Góc giữa hai đường thẳng

- Góc giữa hai đường thẳng cắt nhau $a$ và $b$ là góc nhỏ nhất trong bốn góc mà $a$ và $b$ cắt nhau tạo nên.

- Góc giữa hai đường thẳng chéo nhau $a$ và $b$ trong không gian là góc giữa hai đường thẳng $a'$ và $b'$ cùng đi qua một điểm và lần lượt song song (hoặc trùng) với $a$ và $b$.

Kí hiệu: \(a//a',b//b' \Rightarrow \widehat {\left( {a,b} \right)} = \widehat {\left( {a',b'} \right)}\).

- Giả sử \(\overrightarrow u \) là VTCP của \(a,\overrightarrow v \) là VTCP của \(b,\left( {\overrightarrow u ,\overrightarrow v } \right) = \alpha \). Khi đó:

\(\widehat {\left( {a,b} \right)} = \left\{ \begin{array}{l}\alpha ,{0^0} \le \alpha  \le {90^0}\\{180^0} - \alpha ,{90^0} < \alpha  \le {180^0}\end{array} \right.\)

- Nếu \(a//b\) hoặc \(a \equiv b\) thì \(\widehat {\left( {a,b} \right)} = {0^0}\)

Góc giữa hai đường thẳng chỉ có thể là góc nhọn hoặc góc vuông.