Năng lượng của mạch dao động LC

- Năng lượng điện trường tập trung ở trong tụ điện: \({W_d} = \dfrac{1}{2}C{u^2} = \dfrac{1}{2}qu = \dfrac{{{q^2}}}{{2C}} = \dfrac{{Q_0^2}}{{2C}}{\rm{co}}{{\rm{s}}^2}(\omega t + \varphi )\)

- Năng lượng từ trường tập trung trong cuộn cảm:

\({W_t} = \dfrac{1}{2}L{i^2} = \dfrac{{Q_0^2}}{{2C}}{\sin ^2}\left( {\omega t + \varphi } \right)\)
- Trong quá trình dao động của mạch, năng lượng từ và năng lượng điện trường luôn chuyển hóa cho nhau, nhưng tổng năng lượng điện từ là không đổi.
- Năng lượng điện từ:

\(W = {W_d} + {W_t} = \dfrac{1}{2}C{u^2} + \dfrac{1}{2}L{i^2} = \dfrac{1}{2}CU_0^2 = \dfrac{{Q_0^2}}{{2C}} = \dfrac{1}{2}LI_0^2\)

- Vị trí năng lượng điện trường gấp $n$ lần năng từ điện trường:
\(\left\{ \begin{array}{l}{W_d} = n{W_t}\\W = {W_t} + {W_d}\end{array} \right. \to \left\{ \begin{array}{l}{W_t} = \dfrac{1}{{n + 1}}W\\{W_d} = \dfrac{n}{{n + 1}}W\end{array} \right. \to \left\{ \begin{array}{l}i = \pm \dfrac{{{I_0}}}{{\sqrt {n + 1} }}\\u = \pm {U_0}\sqrt {\dfrac{n}{{n + 1}}} \\q = \pm {Q_0}\sqrt {\dfrac{n}{{n + 1}}} \end{array} \right.\)

- Mạch có cuộn dây không thuần cảm (r≠0):
Công suất tỏa nhiệt trên r hay công suất cần phải cung câp thêm cho mạch để duy trì dao động:
\(P = {I^2}r = \dfrac{{I_0^2}}{2}r\)

- Mạch dao động có tần số góc ω, tần số f và chu kì T thì Wđ và Wt biến thiên với tần số góc 2ω, tần số 2f và chu kì T/2.

- Khi tụ phóng điện thì q và u giảm và ngược lại khi tụ tích điện thì q và u tăng.