Tìm m để hàm số đơn điệu trên miền D cho trước

Phương pháp:

- Bước 1: Nêu điều kiện để hàm số đơn điệu trên D:

+ Hàm số $y = f\left( x \right)$ đồng biến trên $D \Leftrightarrow y' = f'\left( x \right) \geqslant 0, \forall x \in D$.

+ Hàm số $y = f\left( x \right)$ nghịch biến trên $D \Leftrightarrow y' = f'\left( x \right) \leqslant 0, \forall x \in D$.

- Bước 2: Từ điều kiện trên sử dụng các cách suy luận khác nhau cho từng bài toán để tìm $m$.

Dưới đây là một trong những cách hay được sử dụng:

- Rút $m$ theo $x$ sẽ xảy ra một trong hai trường hợp: $m \geqslant g\left( x \right),\forall x \in D$ hoặc $m \leqslant g\left( x \right),\forall x \in D$.

- Khảo sát tính đơn điệu của hàm số $y = g\left( x \right)$ trên $D$.

- Kết luận: $\begin{gathered}m \geqslant g\left( x \right),\forall x \in D \Rightarrow m \geqslant \mathop {\max }\limits_D g\left( x \right) \hfill \\m \leqslant g\left( x \right),\forall x \in D \Rightarrow m \leqslant \mathop {\min }\limits_D g\left( x \right) \hfill \\ \end{gathered} $

- Bước 3: Kết luận.