Tìm số nguyên thỏa mãn điều kiện về chia hết

Phương pháp:

- Dạng: biểu thức có dạng tổng các số hạng thì ta áp dụng tính chất:

Nếu $a + b$ chia hết cho $c$ và $a$ chia hết cho $c$ thì $b$ chia hết cho $c.$

- Dạng: Tìm x để \({\rm{a}} \vdots A(x)\) thì \(A(x) \in \)Ư(a), giải các trường hợp ta tìm được các giá trị của \(x\).

Ví dụ: Tìm \(x\) để \(5 \vdots \left( {x - 2} \right)\)

\(5 \vdots \left( {x - 2} \right) \Rightarrow \left( {x - 2} \right) \in \)Ư(5) \( \Rightarrow \) \(\left( {x - 2} \right) \in \left\{ { - 1;1;5; - 5} \right\} \Rightarrow x \in \left\{ {1;3;7; - 3} \right\}\)

Vậy \(x \in \left\{ {1;3;7; - 3} \right\}\).