Viết tất cả các số có n chữ số từ n chữ số cho trước

Phương pháp:

Giả sử từ ba chữ số $a,b,c$ khác $0,$  ta viết các số có ba chữ số như sau:

Chọn $a$ là chữ số hàng trăm ta có: \(\overline {abc} \), \(\overline {acb} \);

Chọn $b$ là chữ số hàng trăm ta có: \(\overline {bac} \), \(\overline {bca} \);

Chọn $c$ là chữ số hàng trăm ta có: \(\overline {cab} \), \(\overline {cba} \).

Vậy tất cả có 6 số có ba chữ số lập được từ ba chữ số khác $0$: $a,b$ và $c.$

Chữ số $0$ không thể đứng ở hàng cao nhất của số có $n$  chữ số phải viết.

Dùng $2$ chữ số $3, 5$, hãy viết tất cả các số có $2$ chữ số mà các chữ số khác nhau.

Giải:

Chữ số hàng chục có thể là $3$ hoặc $5$.

Nếu chữ số hàng chục là $3$ thì chữ số hàng đơn vị là $5$.

Nếu chữ số hàng chục là $5$ thì chữ số hàng đơn vị là $3$.