banner redirect homepage

Các dạng toán về cách ghi số tự nhiên, thứ tự trong tập hợp các số tự nhiên

I. Tìm số liền sau, số liền trước của một số tự nhiên cho trước

Phương pháp:

- Để tìm số liền sau của số tự nhiên a, ta tính a+1.

- Để tìm số liền trước của số tự nhiên a khác 0,ta tính a1.

 Chú ý:

- Số 0  không có số liền trước.

- Hai số tự nhiên liên tiếp thì hơn kém nhau 1  đơn vị.

II. Tìm các số tự nhiên thỏa mãn điều kiện cho trước

Phương pháp:

Liệt kê tất cả các số tự nhiên thỏa mãn đồng thời các điều kiện đã cho

Ví dụ:

Tìm tất cả các số tự nhiên thỏa mãn 12<x<16

Giải:

Ta có: các số tự nhiên lớn hơn 12 và nhỏ hơn 16 là: 13;14;15.

Tìm tất cả các số tự nhiên thỏa mãn 12<x<16

III. Viết tất cả các số có n chữ số từ n chữ số cho trước

Phương pháp:

Giả sử từ ba chữ số a,b,c khác 0,  ta viết các số có ba chữ số như sau:

Chọn a là chữ số hàng trăm ta có: abc¯, acb¯;

Chọn b là chữ số hàng trăm ta có: bac¯, bca¯;

Chọn c là chữ số hàng trăm ta có: cab¯, cba¯.

Vậy tất cả có 6 số có ba chữ số lập được từ ba chữ số khác 0: a,bc.

Chữ số 0 không thể đứng ở hàng cao nhất của số có n  chữ số phải viết.

Dùng 2 chữ số 3,5, hãy viết tất cả các số có 2 chữ số mà các chữ số khác nhau.

Giải:

Chữ số hàng chục có thể là 3 hoặc 5.

Nếu chữ số hàng chục là 3 thì chữ số hàng đơn vị là 5.

Nếu chữ số hàng chục là 5 thì chữ số hàng đơn vị là 3.

IV. Tính số các số có n chữ số cho trước

Phương pháp:

Bước 1: Tìm số nhỏ nhất và số lớn nhất có n chữ số.

Bước 2: Để tính số các chữ số có n  chữ số ta lấy số lớn nhất có n  chữ số trừ đi số nhỏ nhất có n chữ số rồi cộng với 1.

Ví dụ:

Có bao nhiêu số có 3 chữ số?
Giải:
Số lớn nhất có 3 chữ số là 999.
Số nhỏ nhất có 3 chữ số là: 100.
Số các số có 3 chữ số là 999100+1=900.

V. Sử dụng công thức đếm số các số tự nhiên

Phương pháp:

 Để đếm các số tự nhiên từ a đến b,  hai số liên tiếp cách nhau d  đơn vị, ta dùng công thức sau:

bad+1 hay bằng (số cuối – số đầu):khoảng cách +1.

- Căn cứ vào các phần tử đã được liệt kê hoặc căn cứ vào tính chất đặc trưng cho các phần tử của tập hợp cho trước, ta có thể tìm được số phần tử của tập hợp đó.

- Sử dụng các công thức sau:

+ Tập hợp các số tự nhiên từ a đến b có: ba+1 phần tử  (1)

+ Tập hợp các số chẵn từ số chẵn a đến số chẵn b có: (ba):2+1 phần tử  ( 2)

+ Tập hợp các số lẻ từ số lẻ m đến số lẻ n có: (nm):2+1 phần tử  ( 3)

+ Tập hợp các số tự nhiên từ a  đến b,  hai số kế tiếp cách nhau d đơn vị, có: (ba):d+1 phần tử  (4)

Luyện bài tập vận dụng tại đây!

DÀNH CHO 2K6 – LỘ TRÌNH ÔN THI ĐÁNH GIÁ NĂNG LỰC 2024!

Bạn đăng băn khoăn tìm hiểu tham gia thi chưa biết hỏi ai?

Bạn cần lộ trình ôn thi bài bản từ những người am hiểu về kì thi và đề thi?

Bạn cần thầy cô đồng hành suốt quá trình ôn luyện?

Vậy thì hãy xem ngay lộ trình ôn thi bài bản tại ON.TUYENSINH247:

  • Hệ thống kiến thức trọng tâm & làm quen các dạng bài chỉ có trong kỳ thi ĐGNL
  • Phủ kín lượng kiến thức với hệ thống ngân hàng hơn 15.000 câu hỏi độc quyền
  • Học live tương tác với thầy cô kết hợp tài khoản tự luyện chủ động trên trang

Xem thêm thông tin khoá học & Nhận tư vấn miễn phí - TẠI ĐÂY