Đặt {x3+2y2+xy2=2+x−2x2(1)4y2=(√y2+1+1)(y2−x3+3x−2)(2)⎧⎨⎩x3+2y2+xy2=2+x−2x2(1)4y2=(√y2+1+1)(y2−x3+3x−2)(2)
(1)⇔(x3+2x2−x−2)+(2y2+xy2)=0⇔(x+2)(x2−1)+y2(x+2)=0⇔(x+2)(x2−1+y2)=0⇔[x+2=0x2−1+y2=0⇔[x=−2y2=1−x2(1)⇔(x3+2x2−x−2)+(2y2+xy2)=0⇔(x+2)(x2−1)+y2(x+2)=0⇔(x+2)(x2−1+y2)=0⇔[x+2=0x2−1+y2=0⇔[x=−2y2=1−x2
TH1: x=−2x=−2 thay vào (2)(2) được:
4y2=(√y2+1+1)(y2+8−6−2)⇔4y2=(√y2+1+1).y2⇔y2(√y2+1+1−4)=0⇔y2(√y2+1−3)=0⇔[y2=0√y2+1−3=0⇔[y=0y2+1=9⇔[y=0y2=8⇔[y=0y=±2√24y2=(√y2+1+1)(y2+8−6−2)⇔4y2=(√y2+1+1).y2⇔y2(√y2+1+1−4)=0⇔y2(√y2+1−3)=0⇔[y2=0√y2+1−3=0⇔[y=0y2+1=9⇔[y=0y2=8⇔[y=0y=±2√2
TH2: y2=1−x2y2=1−x2 thay vào (2) được:
4(1−x2)=(√2−x2+1)(1−x2−x3+3x−2)⇔4(1−x2)=(√2−x2+1)(−x3−x2+3x−1)⇔4(x2−1)=(√2−x2+1)(x3+x2−3x+1)⇔4(x2−1)=(√2−x2+1)(x−1)(x2+2x−1)⇔4(x−1)(x+1)=(√2−x2+1)(x−1)(x2+2x−1)⇔(x−1)[4x+4−(√2−x2+1)(x2+2x−1)]=0⇔[x−1=04x+4−(√2−x2+1)(x2+2x−1)=0⇔[x=14x+4=(√2−x2+1)(x2+2x−1)4(1−x2)=(√2−x2+1)(1−x2−x3+3x−2)⇔4(1−x2)=(√2−x2+1)(−x3−x2+3x−1)⇔4(x2−1)=(√2−x2+1)(x3+x2−3x+1)⇔4(x2−1)=(√2−x2+1)(x−1)(x2+2x−1)⇔4(x−1)(x+1)=(√2−x2+1)(x−1)(x2+2x−1)⇔(x−1)[4x+4−(√2−x2+1)(x2+2x−1)]=0⇔[x−1=04x+4−(√2−x2+1)(x2+2x−1)=0⇔[x=14x+4=(√2−x2+1)(x2+2x−1)
Với x=1 thì y2=1−1=0⇔y=0.
Với 4x+4=(√2−x2+1)(x2+2x−1) ta có:
4x+4=(√2−x2+1)(x2+2x−1)⇔4x+4=√2−x2(x2+2x−1)+x2+2x−1⇔√2−x2(x2+2x−1)=−x2+2x+5⇔√2−x2=−x2+2x+5x2+2x−1⇔√2−x2=6−(x−1)2(x+1)2−2(∗)
(Do x2+2x−1=0⇔x=−1±√2 không thỏa mãn phương trình)
Vì x2+y2=1 nên x2≤1⇒−1≤x≤1
⇒1≤√2−x2≤√2 hay 1≤VT(∗)≤√2
Lại có,
Với x≤1 thì 6−(x−1)2(x+1)2−2≥6−(1−1)2(1+1)2−2=3⇒VP(∗)≥3
Với x≥−1 thì 6−(x−1)2(x+1)2−2≤6−(−1−1)2(−1+1)2−2=−1⇒VP(∗)≤−1
Do đó với −1≤x≤1 thì VP(∗)≥3 hoặc .
⇒ (*) vô nghiệm do 1≤VT(∗)≤√2 và VP(∗)≥3 hoặc VP(∗)≤−1.
Vậy hệ đã cho có nghiệm (x;y)∈{(−2;0),(−2;−2√2),(−2;2√2),(1;0)}.