Cho các chữ số 0, 1, 2, 4, 5, 7, 8, 9; có thể lập được bao nhiêu số tự nhiên chia hết cho 15, gồm 4 chữ số đôi một khác nhau?


Câu 87945 Vận dụng cao

Cho các chữ số 0, 1, 2, 4, 5, 7, 8, 9; có thể lập được bao nhiêu số tự nhiên chia hết cho 15, gồm 4 chữ số đôi một khác nhau?


Đáp án đúng: a

Phương pháp giải

- Để một số chia hết cho 15 thì số đó phải chia hết cho 3 và cho 5.

- Xét các trường hợp sau:

TH1: \(d = 0\), số cần tìm có dạng \(\overline {abc0} \).

   +) \(a,\,\,b,\,\,c \equiv 1\,\,\left( {\bmod 3} \right)\)\( \Rightarrow a,\,\,b,\,\,c \in \left\{ {1;4;7} \right\}\).

   +) \(a,\,\,b,\,\,c \equiv 2\,\,\left( {\bmod 3} \right)\)\( \Rightarrow a,\,\,b,\,\,c \in \left\{ {2;5;8} \right\}\).

   +) Trong 3 số \(a,\,\,b,\,\,c\) có 1 số chia hết cho 3, 1 số chia 3 dư 1, 1 số chia 3 dư 2.

TH2: \(d = 5\), số cần tìm có dạng \(\overline {abc5} \).

   +) Trong 3 số \(a,\,\,b,\,\,c\) có 2 số chia hết cho 3, 1 số chia 3 dư 1.

   +) Trong 3 số \(a,\,\,b,\,\,c\) có 1 số chia hết cho 3, 2 số chia 3 dư 3.

   +) Trong 3 số \(a,\,\,b,\,\,c\) có 1 số chia 3 dư 1, 1 số chia 3 dư 2.

Xem lời giải

...

>> Học trực tuyến Lớp 11 năm học mới trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.